Book 3A Chapter 4 More about 3-D Figures

4.1 Symmetries in Solids

Level 1

Demonstration 1

The figure shows a right prism with U-shaped base. Draw all its planes of reflection and write down the number of planes of reflection.

Solution

The solid has 2 planes of reflection.

Demonstration 2

The figure shows a right prism whose base is a trapezium. Draw all its axes of rotational symmetry and write down the order of rotational symmetry about each axis.

Solution

The solid has 1 axis of 2 -fold rotational symmetry.

1. The figure shows a right prism whose base is a right-angled isosceles triangle. Draw all its planes of reflection and write down the number of planes of reflection.

2. The figure shows a right prism whose base is an isosceles triangle. Draw all its axes of rotational symmetry and write down the order of rotational symmetry about each axis.

Level (2)

Draw all the planes of reflection in each of the following solids. (3-5)

A right prism with arrow-shaped base

A right pyramid whose base is a rectangle
5.

A cuboid

Determine the number of planes of reflection of each of the following solids. (6-8)

A solid made up of a half cylinder and a cube
7.

A right prism whose base is an equilateral triangle

A right prism whose base is a regular octagon

Draw all axes of rotational symmetry in each of the following solids. (9-11)
9.

A right pyramid whose
10.

A right prism
11.

A cuboid base is a regular pentagon

Determine the number of axes of rotational symmetry and write down the order of rotational symmetry about each axis of each of the following solids. (12-14)

A right pyramid whose base is a square
13.

A right prism whose base is an equilateral triangle
14.

A right prism whose base is a regular pentagon
15. The figure shows a solid made up of 3 identical cubes.
(a) Determine the number of planes of reflection of the solid.
(b) Determine the number of axes of rotational symmetry of the solid and write down the order of rotational symmetry about each axis.

16. The figure shows a solid made up of 4 identical cubes.
(a) Determine the number of planes of reflection of the solid.
(b) Determine the number of axes of rotational symmetry of the solid and write down the order of rotational symmetry about each axis.

817\% Draw a solid which has exactly three planes of reflection.

ชํ 18. ${ }^{\text {ond }}$. Draw a solid which has exactly four axes of rotational symmetry.
19. Draw a solid which has exactly one plane of reflection and one axis of rotational symmetry.

Level (3)

20. The figure shows a solid made up of 4 identical cubes.
(a) Determine the number of planes of reflection of the solid.
(b) Determine the number of axes of rotational symmetry of the solid and write down the order of rotational symmetry about each axis.

Multiple Choice Questions

21. The solid shown is made up of 9 identical cubes. The solid has
A. 1 plane of reflection and no axis of rotational symmetry.
B. 1 plane of reflection and 1 axis of rotational symmetry.
C. 2 planes of reflection and no axis of rotational symmetry.
D. 2 planes of reflection and 1 axis of rotational symmetry.

22. The solid shown is made up of 8 identical cubes.

Which of the following must be true?
I. The solid has 6 axes of rotational symmetry.
II. The solid has at least 1 axis of 3 -fold rotational symmetry.
III. The solid has at least 1 axis of 4 -fold rotational symmetry.

A. I and II only
B. I and III only
C. II and III only
D. I, II and III
23. Which of the following statements about a regular tetrahedron must be true?
I. It has 6 planes of reflection.
II. It has 3 axes of 4 -fold rotational symmetry.
III. It has 4 axes of 3 -fold rotational symmetry.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

4.2 Nets of Solids

Level (1)

Demonstration

The figure shows a right prism whose base is an isosceles triangle. Sketch two of its nets.

Solution

Demonstration 2

Name the solid that can be formed by folding the following net.

Solution

The net can be folded into a cube.

Level (2)

Sketch two nets of each of the following solids. (3-6)

A right prism whose base is a regular hexagon

A cylinder
4.

A right pyramid whose base is a regular pentagon
6.

A right circular cone

Imagine each of the following solids is cut along the grey edges to obtain a net. Sketch the net. (7-9)
7.

8.

9.

Name the solid that can be formed by folding each of the following nets. (10-12)
10.

11.

12.

13. The figure shows a solid made up of two regular tetrahedra. Sketch two nets of the solid.

14. Sketch the solid formed by folding the net on the right.
15. If the net on the right is folded into a cube, which letter will be shown on the face opposite to the face with ' C '?

16. If the net on the right is folded into a cuboid, which letter will be shown on the face opposite to the face with ' D '?

17. If the net on the right is folded into a tetrahedron,
(a) which vertex will coincide with A ?
(b) which edge will coincide with $E F$?

18. If the net on the right is folded into a cube,
(a) which vertices will coincide with E ?
(b) which edge will coincide with $M N$?

Level (3)

19. Sketch the solid formed by folding the net on the right.
[Hint: sketch a regular tetrahedron first.]

Multiple Choice Questions

20. Which of the following figures can be folded into a prism?
A.

B.

C.

D.

21. The figure shows three different views of a cube. Which of the following is a net of the cube?

A.

B.

C.

D.

4.3 Orthographic Views of Solids

Level 1)

Demonstration 1

Draw the orthographic views of each of the following solids.
(a)

Front view A cuboid
(b)

A solid made up of 4 cubes and 4 identical triangular prisms

Solution

(b) Front view

Demonstration 2

The orthographic views of a solid are shown below.
Draw the solid on isometric grid paper.

Solution

1. Draw the orthographic views of each of the following solids.

Front view A cube
(b)

Front view
A solid made up of 4 identical cubes
(a)
Front view

(b)

2. The orthographic views of a solid are shown below. Draw the solid on isometric grid paper.

Demonstration 3

The orthographic views of a solid are shown below.
Draw the solid on oblique grid paper.

Side view

Solution

3. The orthographic views of a solid are shown below. Draw the solid on oblique grid paper.

Level (2)

Draw the orthographic views of each of the following solids. (4-12)
4.

Front view
A right prism
7.

5.

Front view
A right prism
8.

Front view
A solid made up of 5 identical cubes
6.

Front view
A right prism
9.

A solid made up of 1 cube and 2 identical triangular prisms
12.

A solid made up of 10 identical cubes

In each of the following, the orthographic views of a solid are shown. Draw the solid on oblique grid paper. (13-14)
13.

Side view

14. Front view

In each of the following, the orthographic views of a solid are shown. Draw the solid on isometric grid paper. (15-16)
15.

Top view

Side view

16.

Draw the orthographic views of each of the following solids. (17-19)
17.

Front view
A solid made up of 3 identical cubes and 3 identical triangular prisms
18.

19.

Front view
A solid made up of 9 identical cubes

In each of the following, the orthographic views of a solid are shown. Draw the solid on oblique grid paper.
(20-21)
20.

21.

In each of the following, the orthographic views of a solid are shown. Draw the solid on isometric grid paper. (22-23)
22.

Side view

23.

| Top view | Side view |
| :---: | :---: | :---: | :---: | :---: |
| | |
| | |
| | |
| | |

The figure shows the net of a solid. Draw a possible set of orthographic views of the solid.

82. The figure shows the front view of a solid.
(a) Draw a possible set of top view and side view of this solid.
(b) Draw this solid on isometric grid paper.

Level (3)

26. The following shows the orthographic views of a solid. Draw the solid on isometric grid paper.

27. The orthographic views of a solid are shown below. Someone claims that the solid can be made up of 17 identical cubes. Do your agree? Explain your answer.

Multiple Choice Questions

28. The figure shows a solid made up of 9 identical cubes. Which of the following is the side view of the solid?
A.

B.

C.

D.

Front view

4.4 Lines and Planes in Solids

Level (1)

Demonstration 1

The figure shows a cuboid $A B C D E F G H$.
(a) Name the projection of $A B$ on plane $E F G H$.
(b) Name the angle between $A G$ and plane $E F G H$.
(c) Name the angle between $A H$ and plane $E F G H$.

Solution

(a) $F G$ is the projection of $A B$ on plane $E F G H$.
(b) $\angle A G F$ is the angle between $A G$ and plane EFGH.
(c) $\angle A H F$ is the angle between $A H$ and plane $E F G H$.

Demonstration 2

In the figure, $A B C D E F G H$ is a cuboid.
(a) Name the angle between planes $A D E F$ and $E F G H$.
(b) Name the angle between planes $A B H E$ and EFGH.

Solution

(a) The angle between planes $A D E F$ and $E F G H$ is $\angle A F G$ (or $\angle D E H$).
(b) The angle between planes $A B H E$ and $E F G H$ is $\angle A E F$ (or $\angle B H G$).

Level (2)

3. In the figure, $A B C D E F G H$ is a right prism.
(a) Name a normal to plane EFGH.
(b) Name the projection of C on plane $A D H E$.
4. The figure shows a cube $A B C D E F G H$.
(a) Name the projection of $B C$ on plane EFGH.
(b) Name the angle between $C G$ and plane EFGH.
(c) Name the angle between $B E$ and plane EFGH.

5. In the figure, $A B C D E F G H$ is a cube.
(a) Name the angle between planes $A D E F$ and $A B G F$.
(b) Name the angle between planes $C D F G$ and $A B C D$.

6. In the figure, $A B C D E F G H$ is a cube.
(a) Name the projection of B on plane $C D E H$.
(b) Name the projection of $C D$ on plane $A B G F$.
(c) Name the projection of $A F$ on plane $B C H G$.

7. In the figure, $A B C D E F G H$ is a cuboid.
(a) (i) Name the projection of $A H$ on plane $E F G H$.
(ii) Name the angle between $A H$ and plane $E F G H$.
(b) (i) Name the projection of $B H$ on plane $C D E H$.
(ii) Name the angle between $B H$ and plane $C D E H$.

8. In the figure, $A B C D E F$ is a right triangular prism.
(a) (i) Name the projection of $A D$ on plane $B C D E$.
(ii) Name the angle between $A D$ and plane $B C D E$.
(b) (i) Name the projection of $C E$ on plane $A B E F$.
(ii) Name the angle between $C E$ and plane $A B E F$.

9. In the figure, $A B C D E F$ is a right triangular prism.
(a) Name the angle between planes $A B F E$ and $B C D F$.
(b) Name the angle between planes $A B F E$ and $A C D E$.
10. In the figure, $A B C D E F G H$ is a cube.
(a) Name the angle between planes $B C H G$ and $C D E H$.
(b) Name the angle between planes $A G H D$ and $E F G H$.
(c) Name the angle between planes $B D E G$ and $C D E H$.

11. In the figure, $V A B C D$ is a right pyramid whose base is a square.
E is the projection of V on plane $A B C D$.
(a) Name the projection of $V B$ on plane $A B C D$.
(b) Name the angle between $V D$ and plane $A B C D$.
(c) Name the angle between planes VAE and VDE.

12. In the figure, $V A B C D$ is a right pyramid whose base is a rectangle. M and N are the mid-points of $C D$ and $A D$ respectively. E is the projection of V on plane $A B C D$.
(a) Name the angle between planes $V C D$ and $A B C D$.
(b) Name the angle between planes $V A D$ and plane $A B C D$.

13. In the figure, $A B C D E F G H$ is a cube. $A C$ meets $B D$ at P.
(a) Name the angle between planes $A C E$ and $A C D$.
(b) Name the angle between planes $B D F$ and $B D H$. Explain your answer.

14. In the figure, $V A B C$ is a triangular pyramid. P is the mid-point of $A B$. $\angle V C A=\angle V C B=90^{\circ}$ and $A C=B C$.
(a) Name the projection of $V A$ on plane $V B C$.
(b) Name the angle between $V B$ and plane $V A C$.
(c) Name the angle between planes $V A B$ and $A B C$. Explain your answer.

15. In the figure, $A B C D$ is a regular tetrahedron. Mark the angle between planes $A B C$ and $A C D$.

Level (3)

14. In the figure, $A B C D E F$ is a right prism whose base is an equilateral triangle. M and N are the mid-points of $A B$ and $E F$ respectively.
(a) Name the projection of $C E$ on plane $A B F E$.
(b) Name the angle between $A D$ and plane $C D N M$.
(c) Name the angle between planes $C M E$ and $C M F$. Explain your answer.

Multiple Choice Questions

15. In the figure, $A B C D E F G H$ is a cuboid. The angle between $B E$ and plane $A B G F$ is
A. $\angle A B E$.
B. $\angle B E F$.
C. $\angle E B F$.
D. $\angle E B G$.

16. The figure shows a cuboid $A B C D E F G H$. Which of the following are right angles?
I. $\angle B D E$
II. $\angle D C G$
III. $\angle F B H$
A. I and II only
B. I and III only
C. II and III only

D. I, II and III

Answers

3A Chapter 4

Section 4.1

Level 1

1. 2
2. 1 axis of 2 -fold rotational symmetry

Level 2

6. 2
7. 4
8. 9
9. $1 ; 1$ axis of 4 -fold rotational symmetry
10. $4 ; 1$ axis of 3 -fold rotational symmetry, 3 axes of 2 -fold rotational symmetry
11. $6 ; 1$ axis of 5 -fold rotational symmetry, 5 axes of 2 -fold rotational symmetry
12. (a) 2
(b) 1; 1 axis of 2-fold rotational symmetry
13. (a) 5
(b) 5; 1 axis of 4-fold rotational symmetry, 4 axes of 2-fold rotational symmetry

Level 3

20. (a) 3
(b) 1;1 axis of 3-fold rotational symmetry

Multiple Choice Questions

21. D
22. C
23. B

Section 4.2

Level 1

2. pyramid

Level 2

10. tetrahedron
11. pyramid
12. prism
13. F
14. A
15. (a) C
(b) $E D$
16. (a) A, G
(b) $K J$

Multiple Choice Questions

20. B
21. C
© Educational Publishing House Ltd

Section 4.3

Level 3

27. yes

Multiple Choice Questions

28. C

Section 4.4

Level 1

1.

(a) GH
(b) $\angle C G H$
(c) $\angle B E G$
2. (a) $\angle B A D$ (or $\angle G F E)$
(b) $\angle A D F($ or $\angle B C G)$

Level 2

3. (a) $B F($ or $A E)$
(b) D
4. (a) C
(b) $B A$
(c) $B G$
5.

(a) (i) FH
(ii) $\angle A H F$
(b) (i) CH
(ii) $\angle B H C$
(a) (i) $B D$
(ii) $\angle A D B$
(b) (i) $B E$
(ii) $\angle C E B$
6.
7. (a) $\angle A B C$ (or $\angle E F D)$
(b) $\angle B A C($ or $\angle F E D)$
8. (a) $\angle B C D$ (or $\angle G H E)$
(b) $\angle A G F($ or $\angle D H E)$
(c) $\angle B D C$ (or $\angle G E H)$
9.
(a) $E B$
(b) $\angle V D B$
(c) $\angle A E D$
10. (a) $\angle V M E$
(b) $\angle V N E$
11. (a) $\angle D P E$
(b) $\angle F P H$
12. (a) $V C$
(b) $\angle B V C$
(c) $\angle V P C$

Level 3
14. (a) $M E$
(b) $\angle A D M$
(c) $\angle E M F$

Multiple Choice Questions

15. C
16. A
