Learn at Home with Diverse Online Resources

In view of the impact brought by the new coronavirus, schools in Hong Kong have delayed school resumption after the Lunar New Year Holiday. Let's make good use of this online resources to facilitate us to learn at home.

Name: \qquad ()

Learn at Home F4 Math worksheet $\mathbf{1 5 . 1}$ Junior form Coordinate Geometry

Key Points

Distance Formula

The distance between any two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ on a rectangular coordinate plane is given by:

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Slopes of Straight Lines

1. Slope and inclination of a straight line Consider a straight line L passing through $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.
(a) The slope m of L is given by:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

(b) The inclination θ of L is the angle that L makes with the
 positive x-axis, where $0^{\circ} \leq \theta \leq 180^{\circ}$.

$$
\tan \theta=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

2. Parallel lines and perpendicular lines

Let m_{1} and m_{2} be the slopes of straight lines L_{1} and L_{2} respectively.
(a) If $L_{1} / / L_{2}$, then $m_{1}=m_{2}$.

Conversely, if $m_{1}=m_{2}$, then $L_{1} / / L_{2}$.
(b) If $L_{1} \perp L_{2}$, then $m_{1} \times m_{2}=-1$.

Conversely, if $m_{1} \times m_{2}=-1$, then $L_{1} \perp L_{2}$.
3. Collinear points

Consider three points A, B and C. If line segments $A B$ and $B C$ with the common end point B, and $A B$ and $B C$ have the same slope, then points
A, B and C are collinear.

Mid-point Formula

If $M(x, y)$ is the mid-point of the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then

$$
x=\frac{x_{1}+x_{2}}{2} \text { and } y=\frac{y_{1}+y_{2}}{2}
$$

1. In the figure, $O, A(a, 12)$ and $B(5,12)$ are the vertices of a triangle.
(a) Express the lengths of $O A$ and $A B$ in terms of a.
(b) If the perimeter of $\triangle A O B$ is 42 units, find the value of a.

2. In the figure, $A(-4,4), B(1,9)$ and $C(10,0)$ are the vertices of a triangle.
(a) Show that $\angle A B C=90^{\circ}$.
(b) Hence, find the area of $\triangle A B C$.

3. $A(0,6), B(-2, m), C(4,2)$ and $D(6,7)$ are the vertices of a parallelogram.
(a) Find the value of m.
(b) Lena claims that no points inside the parallelogram lie in quadrant IV. Do you agree? Explain your answer.
4. Given that $A(5,-2), B(-1, k)$ and $C(-4,1)$ are collinear points on a rectangular coordinate plane.
(a) Find the value of k.
(b) Find the mid-point of $A B$.
5. The figure shows a triangle with vertices $A(-6, h), B(-8,1)$ and $C(k, 1)$.

It is given that $A C=B C$ and the slope of $A B$ is 3 .
(a) Find the values of h and k.
(b) (i) Find the area of $\triangle A B C$.
(ii) D is a point on $A B$ such that $C D \perp A B$.

Show that the length of $C D$ is $3 \sqrt{10}$ units.

Learn at Home F4 Math worksheet 15.2 Vertical line and Horizontal line

Before finish the following excise, let's have a Math chat by scanning the QR code

https://qrgo.page.link/1A5L1

Vertical Lines	Horizontal Lines
The equation of a vertical line passing	The equation of a horizontal line passing
through point (h, k) is $x=h$.	
through point (h, k) is $y=k$.	

1. Find the equation of the straight line which passes through $(-2,-5)$ and is parallel to the x-axis.
2. Find the equation of the straight line which passes through $(8,-3)$ and has a x-intercept 8 .
3. Consider three straight lines $L_{1}: y=9, L_{2}: x=-6$ and $L_{3}: x+3=0$.
(a) Which straight lines are parallel to each other?
(b) Which straight lines are perpendicular to each other?
4. Find the equation(s) of the straight line which has a distance of 3 units from the line $x=2$.
5. Find the equation(s) of the straight line which makes an angle of 45° with a straight line L and passes through (2, $3)$. The slope of L is -1 which also passes through $(2,3)$.
6. In the figure, the coordinates of A, B and C are $(2,2),(8,2)$ and $(4,5)$ respectively.
(a) Find the equation of the perpendicular bisector of $A B$.
(b) Hence, find the x-coordinate of the circumcentre of $\triangle A B C$.

Learn at Home F4 Math worksheet 15.3 Point-slope Form

Slope m of a line joining any two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \text { where } x_{1} \neq x_{2}
$$

Point-slope Form

The equation of a straight line passing through $\left(x_{1}, y_{1}\right)$ with slope m is given by:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

1. Find the equation of the straight line passing through $A(-2,4)$ and $B(3,-7)$.
2. In the figure, $L_{1}: 2 x+3 y-7=0$ is a straight line and L_{2} is another straight line with slope $-2 . L_{1}$ and L_{2} intersect at $G(a,-1)$.
(a) Find the value of a.
(b) Find the equation of L_{2}.

3. A straight line L with inclination 30° passes through the point $(0,-3)$.
(a) Find the equation of L.
(Leave the answer in surd form.) \rightarrow Exercise 15.1:26
(b) Determine whether L passes through $(\sqrt{12},-1)$.
4. The coordinates of E and F are $(-4,-3)$ and $(2,-1)$ respectively. Find the equation of the perpendicular bisector of $E F$.
5. $\quad Q(-2,2)$ is a point on $P R$ with $P Q: Q R=3: 2$. The coordinates of P are $(-8,-1)$.
(a) Find the coordinates of R.
(b) Find the equation of the straight line L passing through R and $S(5,-5)$.

Learn at Home F4 Math worksheet 15.4 Slope-intercept Form

Slope-intercept Form

The equation of a straight line with slope m and y-intercept c is given by:

$$
y=m x+c
$$

1. A straight line L has x-intercept $\frac{1}{2}$ and y-intercept -2 .
(a) Find the equation of L.
\rightarrow Exercise 15.1: 15-16
(b) Determine whether L passes through $A(3,10)$.
2. The figure shows the graph of $y=m x+c$. Determine whether $m c$ is a positive number or a negative number.

3. In the figure, the slope and the x-intercept of L_{1} are $\frac{1}{2}$ and 6 respectively. The slope of L_{2} is triple that of L_{1}. Both lines intersect the y-axis at K.
(a) Find the y-intercept of L_{1}.
(b) Find the equation of L_{2}.

4. $L_{1}: x-y+3=0$ is a straight line. L_{2} is another straight line such that L_{1} and L_{2} have the same y-intercept and $L_{1} \perp$ L_{2}. Find the equation of L_{2}.
5. In the figure, the inclination and the y-intercept of a straight line L are ϑ and -8 respectively.

It is given that $\sin \vartheta=\frac{8}{\sqrt{73}}$.

6. Let $a x+b y+c=0$ be the equation of a straight line L.
(a) Express the equation of L in the slope-intercept form. Hence, express the slope and the y-intercept of L in terms of a, b and c.
(b) If $2 a=5 b=c$, find the slope and the y-intercept of L.

Learn at Home F4 Math worksheet 15.5 Slope and Intercept

Before finish the following excise, let's have a Math chat by scanning the QR code

https://qrgo.page.link/jYraB
General Form of the Equation of a Straight Line

$$
A x+B y+C=0
$$

where A, B and C are constants with A and B not both zero.
Consider the equation of a straight line $L: A x+B y+C=0$, where $A \neq 0$ and $B \neq 0$.
x-intercept $=-\frac{C}{A}$
y-intercept $=-\frac{C}{B}$
Slope $=-\frac{A}{B}$

Note: (i) If $A=0, L$ is a horizontal line.
(ii) If $B=0, L$ is a vertical line.

1. In each of the following, find the slope, the x-intercept and the y-intercept of the given straight line.
(a) $-\frac{x}{9}+7=-y$
(b) $\frac{1}{2} y=4 x-\frac{1}{3}$
2. In each of the following, determine whether the straight lines L_{1} and L_{2} are parallel to each other, perpendicular to each other or neither of them.
(a) $L_{1}: 2 x-3 y+1=0 ; L_{2}: 6 y-4 x-3=0$
(b) $L_{1}: 3 x=10-2 y ; L_{2}: 6 x-9 y=5$
(c) $L_{1}: \frac{x}{2}-\frac{y}{5}=1 ; L_{2}: 4 y-\frac{1}{6}=-2 x$
3. In the figure, the straight line $L: 3 x+k y+24=0$ cuts the x-axis and the y-axis at P and Q respectively. L passes through $M(-4,3)$.
(a) Find the coordinates of P and Q.
(b) Billy claims that the area of $\triangle P O Q$ is greater than 20 square units. Do you agree? Explain your answer.

HKDSE Corner

4. In the figure, the equations of the straight line L_{1} and L_{2} are $a x=1$ and $b x+c y=1$ respectively. Which of the following are true?
I. $a>0$
II. $a>b$
III. $c<0$
A. I and II only
B. I and III only
C. II and III only

D. I, II and III
5. The slope, the x-intercept and the y-intercept of a straight line are m, h and k respectively. Prove that $k=-m h$.

Learn at Home F4 Math worksheet 15.6 Parallel lines and Perpendicular lines.

In this worksheet, give the answers for equations of straight lines in the general form.

1. $L_{1}:(k+3) x+2 y+7=0$ and $L_{2}:(k-2) x-3 y-3=0$ are two perpendicular straight lines.

Find the value of k.
2. Consider three points $P(-4,-1), Q(1,1)$ and $R(11,5)$ on a rectangular coordinate plane.
(a) By finding the slopes of $P Q$ and $Q R$, determine whether P, Q and R are collinear.
(b) $S(13,-2)$ is a point on the same coordinate plane. Find the equation of the altitude from S to $P R$ of $\triangle P R S$.
3. $A(-3,1), B(1,5)$ and $C(5,-3)$ are three vertices of $\triangle A B C$.
(a) Find the equations of the median from B to $A C$ and the median from C to $A B$.
(b) Determine whether $T(1,1)$ is the centriod of $\triangle A B C$.
4. Consider the following two straight lines:

$$
\begin{aligned}
& L_{1}: 4 x+k y+4=0 \\
& L_{2}: y=\frac{k}{4} x+5 \quad(k \neq 0)
\end{aligned}
$$

L_{3} is another straight line which parallel to L_{1} and has the same y-intercept as L_{2}.
(a) Prove that $L_{2} \perp L_{3}$.
(b) Find the equation of L_{3} in terms of k.
5. In the figure, $A B C D$ is a rectangle. A is a point on the x-axis. The coordinates of B and C are $(3,-4)$ and $(5,-1)$ respectively.
(a) Find the coordinates of A.
(b) Find the equation of $A D$.

Learn at Home F4 Math worksheet 15.7 No. of points of intersection of $\mathbf{2}$ st. lines

Before finish the following excise, let's have a Math chat by scanning the QR code

https://qrgo.page.link/YQzzn
A. Number of Points of Intersection of Two Straight Lines L_{1} and L_{2} :

there is only one point of intersection.
(ii) If $m_{1}=m_{2}$ and $c_{1} \neq c_{2}$,

there are no points of intersection. ($L_{1} / / L_{2}$)
(iii) If $m_{1}=m_{2}$ and $c_{1}=c_{2}$,

there are infinitely many points of intersection. (L_{2} overlaps with L_{1}.)
B. Finding the Number of Points of Intersection of L_{1} and L_{2} :

Step 1: check whether $m_{1}=m_{2}$.
Step 2: check whether $c_{1}=c_{2}$.

1. In each of the following, find the number of points of intersection of L_{1} and L_{2}.
(a) $L_{1}: x-y+8=0, L_{2}: 3 y=9-2 x$
(b) $L_{1}: 5 y=3 x, L_{2}: 6 x=1+10 y$
(c) $L_{1}: y=4 x-3, L_{2}: 8=x-8 y$
(d) $L_{1}: y=-\frac{2}{3} x-8, L_{2}: \frac{x}{3}+\frac{y}{2}=-4$
2. Two straight lines $L_{1}: 5=k x-5 y$ and $L_{2}:(2 k+1) y=2 x+15$ do not intersect, where k is a constant. Find the value(s) of k.
3. Two straight lines $L_{1}: 3 x=2(1-m y)$ and $L_{2}: 6 x-8 y+(n-1)=0$ have infinitely many points of intersection, where m and n are constants. Find the values of m and n.
\rightarrow Exercise 15.3: 19
4. Consider the following three straight lines:

$$
\begin{aligned}
& L_{1}: x+2 y=6 \\
& L_{2}: y-14=\frac{4}{3} x \\
& L_{3}: 4 x=3 y+16
\end{aligned}
$$

Which of the following is true?
A. L_{1} and L_{2} do not intersect.
B. L_{1} and L_{3} intersect at a point.
C. L_{2} and L_{3} have infinitely many points of intersection.
D. L_{1}, L_{2} and L_{3} intersect at a point.
5. It is given that s is a constant. Three straight lines $L_{1}: y=-2, L_{2}: s y+s=6 x$ and $L_{3}:(s+1) x-4 s=5 y$ cannot form a triangle. Find the values of s.

Learn at Home F4 Math worksheet 15.8

the Coordinates of the Point of Intersection of two straight lines

In this worksheet, give the answers for equations of straight lines in the general form.
(i) The coordinates of the point of intersection of two straight lines L_{1} and L_{2} can be found by solving the simultaneous equations $\left\{\begin{array}{l}\text { equation of } L_{1} \\ \text { equation of } L_{2}\end{array}\right.$.
(ii) The simultaneous equations can be solved by substitution or elimination.

1. The equations of two straight lines L_{1} and L_{2} are $2 x-y+6=0$ and $4 x+3 y-8=0$ respectively. L_{1} and L_{2} intersect at a point E.
(a) Find the coordinates of E.
(b) Find the equation of a straight line L_{3} passing through E and with x-intercept 4 .
2. $L_{1}: 3 x-5 y-9=0, L_{2}: x+2 y-2=0$ and $L_{3}: x-3 y-7=0$ are three straight lines. L_{1} and L_{3} intersect at K.
(a) Find the coordinates of K.
(b) A straight line L_{4} passes through K and perpendicular to L_{2}. Find the equation of L_{4}.
3. The straight lines $L_{1}: 4 x+3 y+6=0$ and $L_{2}: x-k y+7=0$ intersect at a point R, where k is a constant.
(a) Express the coordinates of R in terms of k.
(b) If R is a point on the straight line $L_{3}: k x-y+8=0$, find the value(s) of k.
4. In the figure, L_{1} and L_{2} intersect at A. L_{3} cuts L_{1} and L_{2} at B and C respectively. The equations of L_{1}, L_{2} and L_{3} are x $-2 y+6=0,4 x+3 y-20=0$ and $x=8$ respectively.
(a) Find the coordinates of A, B and C.
(b) Find the area of $\triangle A B C$.

\rightarrow Exercise 15.3: 24
5. In the figure, $A B C D$ is a trapezium with $A D / / B C$. The equations of $A B$ and $A D$ are $6 x-y+20=0$ and $2 x-3 y+12$ $=0$ respectively. The coordinates of C are $(5,2)$.
(a) Find the coordinates of B.
(b) Find the equation of diagonal $B D$.

Full Solution

https://qrgo.page.link/m6LvZ

