Intersection of Two Straight Lines

- Intersection of Two Straight Lines

Intersection of Two Straight Lines

We have three possible cases concerning the intersection of two straight lines.

Consider two straight lines L_{1} and L_{2} lying on the same rectangular coordinate plane.
Let
m_{1} and c_{1} be the slope and the y-intercept of L_{1} respectively, m_{2} and c_{2} be the slope and the y-intercept of L_{2} respectively.
(1) There is only one point of intersection. L_{1} and L_{2} have different slopes, i.e. $m_{1} \neq m_{2}$.

Intersection of Two Straight Lines

(2) There are no points of intersection.
L_{1} and L_{2} have the same slope but different y-intercept, i.e. $m_{1}=m_{2}$ and $c_{1} \neq c_{2}$.

In this case, L_{1} and L_{2} are parallel to each other.

(3) There are infinitely many points of intersection.
L_{1} and L_{2} have the same slope and the same y-intercept,
i.e. $m_{1}=m_{2}$ and $c_{1}=c_{2}$.

In this case, L_{1} and L_{2} overlap with each other. The equation of L_{1} and L_{2} represent the same line.

Intersection of Two Straight Lines

Example 1

In each of the following, find the number of points of intersection of L_{1} and L_{2}. When L_{1} and L_{2} intersect at only one point, find the coordinates of the point of intersection.
(a) $L_{1}: y=-3 x+7$
$L_{2}: 3 x+y+7=0$
(b) $L_{1}: x-4 y+3=0$
$L_{2}: 8 y=2 x+6$
(c) $L_{1}: 5 x+2 y-8=0$
$L_{2}: 2 y=5 x+8$
(a) Slope of $L_{1}=-3$
y-intercept of $L_{1}=7$

$$
\begin{aligned}
& \text { Slope of } L_{2}=-\frac{3}{1}=-3 \\
& y \text {-intercept of } L_{2}=-\frac{7}{1}=-7
\end{aligned}
$$

L_{1} and L_{2} have the same slope but different y-intercepts.
\therefore There are no points of intersection.

Intersection of Two Straight Lines

Example 1

In each of the following, find the number of points of intersection of L_{1} and L_{2}. When L_{1} and L_{2} intersect at only one point, find the coordinates of the point of intersection.
(a) $L_{1}: y=-3 x+7$
$L_{2}: 3 x+y+7=0$
(b) $L_{1}: x-4 y+3=0$
$L_{2}: 8 y=2 x+6$
(c) $L_{1}: 5 x+2 y-8=0$
$L_{2}: 2 y=5 x+8$
(b) Slope of $L_{1}=-\frac{1}{-4}=\frac{1}{4}$

$$
\text { Slope of } L_{2}=\frac{2}{8}=\frac{1}{4}
$$

y-intercept of $L_{1}=-\frac{3}{-4}=\frac{3}{4}$
y-intercept of $L_{2}=\frac{6}{8}=\frac{3}{4}$
L_{1} and L_{2} have the same slope and the same y-intercept.
$\therefore \quad$ There are infinitely many points of intersection.

Intersection of Two Straight Lines

Example 1

In each of the following, find the number of points of intersection of L_{1} and L_{2}. When L_{1} and L_{2} intersect at only one point, find the coordinates of the point of intersection.
(a) $L_{1}: y=-3 x+7$
$L_{2}: 3 x+y+7=0$
(b) $L_{1}: x-4 y+3=0$
$L_{2}: 8 y=2 x+6$
(c) $L_{1}: 5 x+2 y-8=0$
$L_{2}: 2 y=5 x+8$
$\begin{array}{l:l}\text { (c) } \quad \text { Slope of } L_{1}=-\frac{5}{2} & \text { Slope of } L_{2}=\frac{5}{2}\end{array}$
L_{1} and L_{2} have different slopes.
$\therefore \quad$ There is only one point of intersection.

Intersection of Two Straight Lines

Example 1

In each of the following, find the number of points of intersection of L_{1} and L_{2}. When L_{1} and L_{2} intersect at only one point, find the coordinates of the point of intersection.
(a) $L_{1}: y=-3 x+7$
$L_{2}: 3 x+y+7=0$
(b) $L_{1}: x-4 y+3=0$
$L_{2}: 8 y=2 x+6$
(c) $L_{1}: 5 x+2 y-8=0$
$L_{2}: 2 y=5 x+8$

$$
\text { (c) } \begin{aligned}
L_{1}: & 5 x+2 y-8 \\
L_{2}: & =0 \\
& 2 y \\
\text { Put (2) into (1). } 5 x+(5 x+8)-8 & =0 \\
& 10 x \\
& =0 \\
x & =0 \\
\text { Put } x=0 \text { into (2). } & 2 y \\
& y \\
& =5(0)+8 \\
y & =4
\end{aligned}
$$

$\therefore \quad$ The coordinates of the point of intersection are $(0,4)$.

Intersection of Two Straight Lines

Example 2
Consider two straight lines L_{1} and L_{2},

$$
\begin{array}{lr}
L_{1}: & 5 x+2 y-14=0 \\
L_{2}: & x-3 y-13=0 \tag{2}
\end{array}
$$

It is given that L_{1} and L_{2} intersect at a point P.
(a) Find the coordinates of P.
(b) Find the equation of a straight line L_{3} passing through P and perpendicular to the line $L_{4}: 4 x-y+6=0$.

$$
\begin{align*}
& \text { (a) }(2) \times 5 \text { : } \\
& 5 x-15 y-65=0 \tag{3}\\
& (5 x+2 y-14)-(5 x-15 y-65)=0 \\
& 17 y+51=0 \\
& y=-3 \\
& \text { Put } y=-3 \text { into (2). } \\
& x-3(-3)-13=0 \\
& x=4
\end{align*}
$$

$\therefore \quad$ The coordinates of P are $(4,-3)$.

Intersection of Two Straight Lines

Example 2
Consider two straight lines L_{1} and L_{2},

$$
\begin{array}{lr}
L_{1}: & 5 x+2 y-14=0 \\
L_{2}: & x-3 y-13=0 \tag{2}
\end{array}
$$

It is given that L_{1} and L_{2} intersect at a point P.
(a) Find the coordinates of P.
(b) Find the equation of a straight line L_{3} passing through P and perpendicular to the line $L_{4}: 4 x-y+6=0$.
(b) Slope of $L_{4}=-\frac{4}{-1}=4$
$\therefore \quad$ Slope of $L_{3}=-\frac{1}{4}$
Equation of L_{3} :

$$
\begin{aligned}
y-(-3) & =-\frac{1}{4}(x-4) \\
4 y+12 & =-x+4 \\
x+4 y+8 & =0
\end{aligned}
$$

