Intersection of Two Straight Lines

We have three possible cases concerning the intersection of two straight lines.

Consider two straight lines L_1 and L_2 lying on the same rectangular coordinate plane.

Let

 m_1 and c_1 be the slope and the *y*-intercept of L_1 respectively, m_2 and c_2 be the slope and the *y*-intercept of L_2 respectively.

(1) There is only one point of intersection. L_1 and L_2 have different slopes, i.e. $m_1 \neq m_2$.

other.

(2) There are no points of intersection.

 L_1 and L_2 have the same slope but different y-intercept, i.e. $m_1 = m_2$ and $c_1 \neq c_2$. In this case, L_1 and L_2 are parallel to each

(3) There are infinitely many points of intersection.

 L_1 and L_2 have the same slope and the same *y*-intercept, i.e. $m_1 = m_2$ and $c_1 = c_2$. In this case, L_1 and L_2 overlap with each other. The equation of L_1 and L_2 represent the same line.

In each of the following, find the number of points of intersection of L_1 and L_2 . When L_1 and L_2 intersect at only one point, find the coordinates of the point of intersection.

- (a) $L_1: y = -3x + 7$ (b) $L_1: x - 4y + 3 = 0$ (c) $L_1: 5x + 2y - 8 = 0$ $L_2: 3x + y + 7 = 0$ $L_2: 8y = 2x + 6$ $L_2: 2y = 5x + 8$
- (a) Slope of $L_1 = -3$ *y*-intercept of $L_1 = 7$ Slope of $L_2 = -\frac{3}{1} = -3$ *y*-intercept of $L_2 = -\frac{7}{1} = -7$

 L_1 and L_2 have the same slope but different *y*-intercepts.

... There are no points of intersection.

In each of the following, find the number of points of intersection of L_1 and L_2 . When L_1 and L_2 intersect at only one point, find the coordinates of the point of intersection.

(a) $L_1: y = -3x + 7$ (b) $L_1: x - 4y + 3 = 0$ (c) $L_1: 5x + 2y - 8 = 0$ (d) Slope of $L_1 = -\frac{1}{-4} = \frac{1}{4}$ y-intercept of $L_1 = -\frac{3}{-4} = \frac{3}{4}$ L_1 and L_2 have the same slope and the same y-intercept. \therefore There are infinitely many points of intersection.

In each of the following, find the number of points of intersection of L_1 and L_2 . When L_1 and L_2 intersect at only one point, find the coordinates of the point of intersection.

(a) $L_1: y = -3x + 7$ (b) $L_1: x - 4y + 3 = 0$ (c) $L_1: 5x + 2y - 8 = 0$ $L_2: 3x + y + 7 = 0$ $L_2: 8y = 2x + 6$ $L_2: 2y = 5x + 8$

(c) Slope of
$$L_1 = -\frac{5}{2}$$
 Slope of $L_2 = \frac{5}{2}$

 L_1 and L_2 have different slopes.

There is only one point of intersection.

In each of the following, find the number of points of intersection of L_1 and L_2 . When L_1 and L_2 intersect at only one point, find the coordinates of the point of intersection.

(a) $L_1: y = -3x + 7$ $L_2: 3x + y + 7 = 0$ (b) $L_1: x - 4y + 3 = 0$ $L_2: 8y = 2x + 6$ (c) $L_1: 5x + 2y - 8 = 0$ $L_2: 2y = 5x + 8$ 5x + 2y - 8 = 0(1) (c) L_1 : L_2 : 2y = 5x + 8(2) Put (2) into (1). 5x + (5x + 8) - 8 = 010x = 0 $\mathbf{x} = \mathbf{0}$ Put x = 0 into (2). 2y = 5(0) + 8v = 4The coordinates of the point of intersection are (0, 4). •

