Form 5 ICT

Elective Module D: Programming and Software Development

Revision Assignment (1)

There are two questions in this assignment. Answer ALL questions.

1. The following algorithm is designed for checking the validity of a password. The function length () is used to find the number of characters in a string.

(a) What is the output of the above algorithm for the following value of password?

Value of password	Output of algorithm
ABC45	
AB1234	
ABCDEF9	
ABCD9EF	

(b) A password is valid if it satisfies the following three conditions:

- The password consists of at least 6 characters.
- The first 3 characters of the password are letters.
- For the remaining characters, at least one digit should be included.

For example, "HKTAYY2SS" is a valid password because

- the password consists of 9 characters,
- the first 3 characters "H", "K", "T" are letters and
- the $7^{\text {th }}$ character is a digit.

There are two logical errors in the above algorithm.
Correct program segment A.

```
Valid \leftarrow
```

\qquad

```
For x \leftarrow 1 to 3 {
If
```

\qquad
Valid \leftarrow

```
\(\qquad\)
```

}

Correct program segment B.

2. John develops a colouring method to blacken an image with 4×4 pixels. All pixels of the image are labelled with a number from 1 to 16 . Four additional numbers, 17, 18, 19 and 20, are used to represent groups of pixels, pixels 1 to 4, pixels 5 to 8, pixels 9 to 12 and pixels 13 to 16 respectively. For a given image, John will use the shortest sequence of numbers in ascending order to record the pixels to be blackened.

For example, the image below is blackened by ' $4,13,15,16,18$ ':

| 1 | 2 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | 7 | 8 |
| 9 | 10 | 13 | 14 |
| 11 | 12 | 15 | 16 |

(a) John's colouring method is applied.
(i) What is the sequence for blackening the following image?

1	2	5	6
3	4	7	8
9	10	13	14
1	12	15	16

(ii) Blacken the following image using ' $1,5,6,19$ ':

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

(iii) Blacken the following image using the longest possible sequence:

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

Joln plans to write a subprogram with the following variables to restore the image from a sequence.

Variable	Description
A	an integer array for storing the sequence
N	an integer variable for storing the length of the sequence
P	a character array with indexes from 1 to 16 for storing the colours of the pixels (' B ' and ' W ' represent black and white respectively.)

An example is shown below:
The contents of A and N for the image are

The subprogram decodes the data and stores the result in P to represent the image, as shown below:

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

(b) Assume that the initial content of P is empty. Write the pseudocode for the subprogram.

John improves his colouring method by determining the number of times the pixels are referred to by the sequence of numbers. If a pixel is referred to by the sequence once only, it is black; otherwise, the pixel is white. For example, the following image is blackened by ' $4,14,20$ '. The pixels labelled with the numbers $4,13,15$ and 16 are referred to once and so they are black. The pixel labelled with the number 14 is referred to twice, by 14 and 20 , and so it is white.

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

(c) John's improved method is applied.
(i) What is the sequence for blackening the following image?

(ii) Blacken the following image using ' $2,5,17,19$ ':

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

(d) Compare John's original method and improved method.
(i) Give an image with 7 black pixels so that the lengths of the sequences produced by the two methods are the same.

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

(ii) Give an image in which the difference between the lengths of the sequences produced by the two methods is the largest.

1	2	5	6
3	4	7	8
9	10	13	14
11	12	15	16

